Nanokelvin-resolution thermometry with a photonic microscale sensor at room temperature

193
man reads news in newspaper


  • Hong, S. et al. Sub-nanowatt microfluidic single-cell calorimetry. Nat. Commun. 11, 2982 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Hur, S., Mittapally, R., Yadlapalli, S., Reddy, P. & Meyhofer, E. Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C. elegans worms. Nat. Commun. 11, 2983 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article 

    Google Scholar
     

  • Menges, F. et al. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 7, 10874 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Luo, K., Herrick, R., Majumdar, A. & Petroff, P. Scanning thermal microscopy of a vertical-cavity surface-emitting laser. Appl. Phys. Lett. 71, 1604–1606 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Weng, W. et al. Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. Phys. Rev. Lett. 112, 160801 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Strekalov, D., Thompson, R., Baumgartel, L., Grudinin, I. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Tan, S., Wang, S., Saraf, S. & Lipa, J. A. Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity. Opt. Express 25, 3578–3593 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Loh, W., Yegnanarayanan, S., O’Donnell, F. & Juodawlkis, P. W. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing. Optica 6, 152–159 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wei, J., Murray, J. M., Barnes, J., Gonzalez, L. P. & Guha, S. Determination of the temperature dependence of the band gap energy of semiconductors from transmission spectra. J. Electron. Mater. 41, 2857–2866 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Johnson, S. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Marple, D. Refractive index of GaAs. J. Appl. Phys. 35, 1241–1242 (1964).

    ADS 
    Article 

    Google Scholar
     

  • Vendelbo, S. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Reihani, A., Lim, J. W., Fork, D. K., Meyhofer, E. & Reddy, P. Microwatt-resolution calorimeter for studying the reaction thermodynamics of nanomaterials at high temperature and pressure. ACS Sens. 6, 387–398 (2021).

    Article 

    Google Scholar
     

  • Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Sadat, S., Meyhofer, E. & Reddy, P. High resolution resistive thermometry for micro/nanoscale measurements. Rev. Sci. Instrum. 83, 084902 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Jarzyna, M. & Zwierz, M. Quantum interferometric measurements of temperature. Phys. Rev. A 92, 032112 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Luerssen, D., Hudgings, J. A., Mayer, P. M. & Ram, R. J. Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance. In Proc. Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium 253–258 (IEEE, 2005).

  • Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002).

    Article 

    Google Scholar
     

  • Whittaker, D. & Culshaw, I. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60, 2610–2618 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS 
    Article 

    Google Scholar
     

  • Lautenschlager, P., Garriga, M., Logothetidis, S. & Cardona, M. Interband critical points of GaAs and their temperature dependence. Phys. Rev. B 35, 9174–9189 (1987).

    ADS 
    Article 

    Google Scholar
     

  • Schaefer, S., Gao, S., Webster, P., Kosireddy, R. & Johnson, S. Absorption edge characteristics of GaAs, GaSb, InAs, and InSb. J. Appl. Phys. 127, 165705 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Åström, K. J. & Murray, R. M. Feedback Systems (Princeton Univ. Press, 2010).

  • Qian, W. et al. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 36, 1548–1550 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Festa, C. Thermostat with ±0.5 μK monitoring sensitivity. J. Phys. E 16, 683–686 (1983).

    ADS 
    Article 

    Google Scholar
     

  • David, R. & Hunter, I. W. A liquid-in-glass thermometer read by an interferometer. Sens. Actuators A 121, 31–34 (2005).

    Article 

    Google Scholar
     

  • Benson, B. B. & Krause, D. Jr Use of the quartz crystal thermometer for absolute temperature measurements. Rev. Sci. Instrum. 45, 1499–1501 (1974).

    ADS 
    Article 

    Google Scholar
     

  • Sadat, S. et al. Room temperature picowatt-resolution calorimetry. Appl. Phys. Lett. 99, 043106 (2011).

    ADS 
    Article 

    Google Scholar