TOPLINE:
Higher energy intake and glycemic load in the late morning are associated with a lower risk for type 2 diabetes (T2D) in Hispanic/Latino adults.
METHODOLOGY:
- Glucose tolerance peaks in the morning and declines in the afternoon and evening in individuals without diabetes.
- Researchers conducted a prospective cohort study enrolling 8868 Hispanic/Latino adults (mean age, 38.7 years; 51.5% women) without diabetes across four US communities between 2008 and 2011, with a second clinic examination conducted between 2014 and 2017.
- Meal timing was categorized into five periods: Early morning (6:00-8:59 AM), late morning (9:00-11:59 AM), afternoon (12:00-5:59 PM), evening (6:00-11:59 PM), and night (0:00-5:59 AM).
- Participants’ energy intake and glycemic load for each period were assessed at baseline using two 24-hour dietary recalls.
- Incident diabetes was identified through annual follow-up calls or at the second clinic examination.
TAKEAWAY:
- Each 100-kcal increment in energy intake and 10-unit increment in glycemic load in the late morning was associated with a 6% and 7% lower risk for T2D, respectively (both P = .001), independent of total energy intake, diet quality, and other confounders.
- No such association was found between energy intake and glycemic load in early morning, afternoon, evening, or night meal timings and the risk for diabetes.
- Substituting 100 kcal of energy intake from the early morning, afternoon, or evening with late-morning equivalents was associated with a 5% lower risk for diabetes (all P < .05).
- Similarly, substituting 10 units of energy-adjusted glycemic load from the early morning, afternoon, or evening with late-morning equivalents yielded a 7%-9% lower risk for diabetes (all P < .05).
IN PRACTICE:
“Our findings further enhance the existing literature by demonstrating the potential long-term promise of eating in alignment with the diurnal rhythm of glucose tolerance for diabetes prevention,” the authors wrote.
SOURCE:
The study was led by Jin Dai, PhD, Fielding School of Public Health, University of California, Los Angeles. It was published online in Diabetes Care.
LIMITATIONS:
The study’s reliance on only two 24-hour self-reported dietary recalls may have introduced measurement error. Diabetes was self-reported, which may have led to outcome misclassification. The study’s relatively short follow-up time may have introduced reverse causation bias. As most patients had T2D, the findings predominately apply to this diabetes subtype.
DISCLOSURES:
The study was supported by grants from the National Heart, Lung, and Blood Institute. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.